CHAPTER 12 PRACTICE EXERCISES (*OPTIONAL)

12-01 Introduction to Limits	
Use a table to evaluate the limit.	11. $\lim_{x \to 0} 3\sqrt{x+1}$
$1. \lim_{x \to -4} \frac{x^2 + 3x - 4}{x + 4}$	12. $\lim_{x \to 2} \frac{x^2 + 3x + 1}{x + 1}$
$2. \lim_{x \to 0} \frac{3x^2 + 4x}{2x}$	13. $\lim_{x ightarrow 0} 2x(x-1)$
$3. \lim_{x o -1} \left\{ egin{array}{ll} 2x+1, & x \leq -1 \ x^2-2, & x > -1 \end{array} ight.$	$14. \lim_{x o 2} igg\{ egin{array}{cc} -x^2, & x \leq 0 \ x^2, & x > 0 \end{array} igg\}$
Use a graph to determine if the limit exists. If it does n	ot, Problem Solving
explain why. If it does, evaluate the limit. 4. $\lim_{x \to 0} 3 \cos\left(\frac{1}{2x}\right)$	15. The population of some sparrows in the backyard can modeled by $P(t) = \frac{75}{1+e^{-t+2}}$ where P is the number of sparrows in the backyard after t years. Find the limit of the population as time approaches 4 years.
5. $\lim_{x \to 0} -\frac{x^3 + 3x}{x^3}$	Mixed Review
$6. \lim_{x \to 1} \frac{2x+1}{3x-4}$	16. (11-04) Find the distance from the point (3, 2, -3) to the plane x + $2y + z - 5 = 0$.
$7.\lim_{x\to 2}\frac{2\sqrt{x+2}}{x-2}$	17. (11-04) Find the parametric equations of the line passing through $(2, 0, -1)$ and $(4, 2, 2)$.
8. $\lim_{x \to 0} \left\{ \begin{array}{c} x - 3, x \leq 0 \\ x = 0 \end{array} \right\}$	18. (11-03) Evaluate $(2, 2, -1) \times (-3, 0, 1)$.
x→0 (x + 3 , x > 0 Evaluate the limit by direct substitution. If it does not exi say so.	19. (10-02) Evaluate the summation using the shortcut formulas. ist, $\sum_{i=1}^{15} i^2 - 3i$
9. $\lim_{x \to 1} \sin\left(\frac{\pi}{x}\right)$	20. (1-04) Simplify $\frac{f(x+h)-f(x)}{h}$ when $f(x) = 2x^2 - x$.
$10.\lim_{x\to 2}2x^3-5x$	

12-02 EVALUATING LIMITS

Evaluate the limit.	5. $\lim \frac{\sqrt{x+9}-3}{2}$
$1. \lim_{x \to 0} \frac{x^2 + 3x - 10}{2}$	$x \rightarrow 0$ x
$x \rightarrow 2$ $x - 2$ $x^2 - 7x \pm 12$	6. $\lim_{x \to 0} \frac{\sqrt{x+25-5}}{x}$
$2. \lim_{x \to 3} \frac{x - 7x + 12}{x^2 - 3x}$	7. $\lim \frac{\sqrt{x+3}-2}{x+3}$
3. $\lim \frac{x^3 + 4x^2 + 3x}{x^3 + 4x^2 + 3x}$	$x \rightarrow 1$ $x - 1$
$x \rightarrow -1$ $x + 1$	8. a. $\lim_{x \to 0^+} \frac{5x}{ x }$
$4. \lim_{x \to 2} \frac{x-2}{x^2 - 12x + 20}$	b. $\lim_{x\to 0^-}\frac{5x}{ x }$

9. a.
$$\lim_{x \to 1^+} \begin{cases} 2x + 3, x < 1 \\ -x^2 + 1, x \ge 1 \\ b. \lim_{x \to 1^-} \\ 2x + 3, x < 1 \\ -x^2 + 1, x \ge 1 \end{cases}$$
10. a.
$$\lim_{x \to -2^+} \begin{cases} \sqrt{x + 3}, x \le -2 \\ x, x > -2 \\ b. \lim_{x \to -2^-} \\ x, x > -2 \end{cases}$$

Evaluate the limit from calculus.

11. For the function $f(x) = 2x^2$ evaluate $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$. 12. For the function $f(x) = x^2 + 3$ evaluate $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$. 13. For the function $f(x) = x^2 - 2x$ evaluate $\lim_{h \to 0} \frac{f(-1+h) - f(-1)}{h}.$

14. For the function $f(x) = 2x^3 + x$ evaluate $\lim_{h \to 0} \frac{f(-2+h) - f(-2)}{h}.$ 15. For the function $f(x) = rac{1}{x}$ evaluate $\lim_{h \to 0} rac{f(1+h) - f(1)}{h}$. Mixed Review 16. (12-01) Evaluate $\lim_{x \to 3^2} (2x^3 - 18x)$. 17. (12-01) Evaluate $\lim_{x \to -2} \frac{x^2 - 9}{x + 2}$. 18. (11-04) Find the distance from (2, 0, 1) to 2x + y + 3z - 2 = 0. 19. (10-02) Evaluate the sum: $\sum_{i=1}^{15} (i^2 + 3i)$ 20. (10-02) Evaluate the sum: $\sum_{n=1}^{20} \left(\frac{4}{3}\pi r^3\right)$

12-03 DERIVATIVES

1. A function that gives the slope of another function is called a	Problem Solving
 Find the derivative of the function.	14. Velocity is the derivative of position with respect to time. A falling object's position can be modeled by $x(t) = -4.9t^2 + 100$ where <i>t</i> is time in seconds and $x(t)$ is position in meters. Find the
$2. f(x) = 3x^2$	velocity at $t = 2$ seconds.
$3. f(x) = (x - 2)^2$	15. Acceleration is the derivative of velocity with respect to time. A falling object's velocity can be modeled by $v(t) = -9.8t$ where t
$4. f(x) = x^3 + 2x$	is time in seconds and $v(t)$ is velocity in meters per second. Find the acceleration at $t = 2$ seconds.
5. $f(x) = -4x^2 - 2x + 3$	Mixed Review
$f(x) = \sqrt{x-3}$	16 (12.02) Evaluate $\lim_{x \to -\infty} x^2 - 4x + 3$
7. $f(x)=\sqrt{x+2}-4$	10. (12-02) Evaluate $\lim_{x\to 3} \frac{1}{x-3}$.
8. $f(x) = \frac{1}{x}$	17. (12-02) Evaluate $\lim_{x \to 0^+} -\frac{4 x }{x}$.
Find the slope of the function at the given point.	18. (12-01) Evaluate $\lim \cos \pi x$.
9. $f(x) = 3x^2 - 4$ at (2, 8)	$x \to 2$
$10. f(x) = 2x^3 + x \text{ at } (-1, -3)$	19. (10-02) Use formulas to evaluate $\sum_{i=1}^{10} (x^2 - 3x)$.
11. $f(x) = \sqrt{x}$ at (4, 2)	<i>i</i> =1 100
12. $f(x) = \frac{2}{x^2}$ at (1, 2)	20. (10-02) Use formulas to evaluate $\sum_{i=1}(5x^2-x^3)$.
13. $f(x) = x^2 - 3x + 2$ at (0, 2)	

12-04 Limits at Infinity and Limits of Sequences

1. What does it mean to find the limit of a sequence?

Evaluate the limit if it exists.

$$2. \lim_{x \to \infty} \frac{6 - 2x + x^2 - 4x^3}{x^3}$$

7.
$$a_n = \frac{(n^2 + 2n - 1)(3n + 2)}{5 - 2n - 9n^3}$$

8. $a_n = rac{10}{n^4} \cdot \left[rac{n^2(n+1)^2}{4}
ight]$

12-05 INTEGRALS

1. What is an integral?	an integral?	is	What	1.
-------------------------	--------------	----	------	----

Evaluate the limit of the sum.

 $2.\lim_{n\to\infty}\sum_{i=1}^n\frac{i^2}{n^3}$

```
3.\lim_{n	o\infty}\sum_{i=1}^nrac{i-4}{n^2}
```

n .9 . .

$4 \lim_{n \to \infty} \sum_{i=1}^{n}$	$i^{2} + 5$
$4. \lim_{n \to \infty} \sum_{i=1}^{n}$	n^3

5. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2i^2 + i}{n^3}$

Find the area between f(x) and the x-axis betwe x-values.

6. f(x) = 2x + 1; between x = 0 and x = 2

7. $f(x) = -3x^2 + 3$; between x = 0 and x = 1

Evaluate the integral.

8. * $\int_{-1}^{2} -3x \, \mathrm{d}x$

12-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers. On this assignment round your answers to three decimal places unless otherwise directed.

 $2.\lim_{x\to 1}\frac{x^2+2}{x-4}$

3. $\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$

Evaluate each limit.

$$1.\lim_{x \to 2} rac{x-2}{x^2+3x-10}$$

$$a_n = \frac{20}{n^3} \cdot \left[\frac{n(n+1)(2n+1)}{6} \right]$$
$$a_n = \frac{5}{n^2} \cdot \left[\frac{n(n+1)}{2} \right]$$
Mixed Review

(12-03) Find the derivative of
$$f(x) = 2x^3 - 3x$$
.

12. (12-03) Find the derivative of $f(x) = 4\sqrt{x} + 5$.

13. (12-02) Evaluate
$$\lim_{x \to -3} \frac{x+3}{x^2+2x-3}.$$

14. (12-01) Evaluate
$$\lim_{x \to 2} \frac{x+3}{x^2+2x-3}.$$

15. (10-02) Evaluate
$$\sum_{n=1}^{20} (n^3 - n).$$

9.
$$\int_{2}^{3} 2x^{2} dx$$

10. $\int_{1}^{4} (-x^{2} + 3x + 4) dx$
Problem Solving
11. In physics, the integral of a velocity function from $t = 0$ to $t = b$
gives the displacement at b seconds. If the velocity of an object
thrown up at 4.5 m/s is modeled by $v = -9.8t + 4.5$, what is the
displacement of the object after 2 seconds?
Mixed Review
12. (12-04) Evaluate $\lim_{x\to\infty} \frac{3-x+5x^{2}}{x^{2}}$.
13. (12-04) Find the limit of $a_{n} = \frac{(3n^{2}+1)(2n-3)}{1-2n-10n^{2}}$.
en the given
14. (12-03) Find the slope of $f(x) = 3x^{2} - 4$ at $x = -2$.
15. (12-02) Evaluate $\lim_{x\to0} \frac{\sqrt{x+1}-1}{x}$.

16. (12-01) Evaluate
$$\lim_{x\to 0} \sin\left(\frac{2}{x}\right)$$
.

 $4.\lim_{x\to\pi}\frac{3}{\sin x}$ $5.\lim_{x\to 2}\frac{x^3-8}{x-2}$ Find the derivative. 6. f(x) = 4x + 37. $f(x) = -3x^2$ 8. $f(x) = -\frac{2}{x^2}$ 9. Find the slope of $f(x) = 2\sqrt{x}$ at (9, 6).

Find the limit at infinity.

 $10. \lim_{x o \infty} rac{x(2x+3)}{5x^2-7x+1}$ $(2r \pm 1)(3r)$

$$11. \lim_{x
ightarrow -\infty} rac{(2x+1)(3x-1)}{2x^3+5x-1}$$

Use a table or graph to find the limit to 4 decimal places. 12. $\lim_{x\to\infty} \frac{(2x-3)(5x^2+1)}{(x+1)(x-3)}$

Find the limit of the sequence.

13. $a_n = \frac{7n^2 - 2n}{6n^2}$

14. $a_n = \frac{2n+1}{4n^2}$

Find the area between the graph and the x-axis for the given interval of x.

 $15. f(x) = 5x^2 - x \quad [1, 3]$

16. f(x) = 2x [-1, 3]

The equation v = -9.8t + 10 models the velocity of a ball thrown upwards at 10 m/s.

17. The derivative of velocity is the acceleration. Find the acceleration of the ball at t = 3 seconds.

18. Displacement is the integral of the velocity graph. Find the displacement of the ball between t = 0 and t = 3 seconds.

Answers		
12-01		
15 2. 2 31 4. DNE, oscillates 5. DNE, decreases without bound 63 7. DNE, increases without bound 8. DNE, approaches different values from either side	9. 0 10. 6 11. 3 12. $\frac{11}{3}$ 13. 0 14. 4 15. 66 sparrows	16. $\frac{\sqrt{6}}{6}$ $\begin{cases} x = 2t + 2 \\ y = 2t \\ z = 3t - 1 \end{cases}$ 18. (2,1,6) 19. 880 20. $4x + 2h - 1$
12-02		
1. 7 2. $-\frac{1}{3}$ 3. -2 4. $-\frac{1}{8}$ 5. $\frac{1}{6}$ 6. $\frac{1}{10}$	7. $\frac{1}{4}$ 8. 5; -5 9. 0; 5 102; 1 11. 8 12. 2 134	14. 25 15. -1 16. 0 17. Does not exist 18. $\frac{5\sqrt{11}}{14}$ 19. 1600 20. 58800 π
12-03		
1. derivative 2. $f'(x) = -6x$ 3. $f'(x) = 2x - 4$ 4. $f'(x) = 3x^2 + 2$ 5. $f'(x) = -8x - 2$ 6. $f'(x) = \frac{1}{2\sqrt{x-3}}$	$\begin{array}{l} 7. \ f'(x) = \frac{1}{2\sqrt{x+2}} \\ 8. \ f'(x) = -\frac{1}{x^2} \\ 9. \ 12 \\ 10. \ 7 \\ 11. \ \frac{1}{4} \\ 12. \ -4 \end{array}$	$\begin{array}{l} 133\\ 14.\ y=-19.6\ m/s\\ 15.\ a=-9.8\ m/s^2\\ 16.\ 2\\ 174\\ 18.\ 1\\ 19.\ 220\\ 20.\ -23810750 \end{array}$
12-04		
1. Find the value that the terms tend towards as <i>n</i> approaches ∞ . 24 3. does not exist 4. $-\frac{1}{2}$ 5. $\frac{1}{6}$	6. does not exist; diverges 7. $-\frac{1}{3}$; converges 8. $\frac{5}{2}$; converges 9. $\frac{50}{3}$; converges 10. $\frac{5}{2}$; converges	$\begin{array}{l} 11, f'(x) = 6x^2 - 3\\ 12, f'(x) = \frac{2}{\sqrt{2}}\\ 13, -\frac{1}{4}\\ 14, 1\\ 15, 43890 \end{array}$
12-05		
1. The area bounded by $f(x)$, the <i>x</i> -axis, and the lines $x = a$ and $x = b$ 2. $\frac{1}{3}$ 3. $\frac{1}{2}$	4. $\frac{1}{3}$ 5. $\frac{2}{3}$ 6. 6 7. 2	8. $-\frac{9}{2}$ 9. $\frac{38}{3}$ 10. $\frac{27}{2}$ 11. -10.6 m

15. (12-02) Evaluate
$$\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x}$$
.

5. (12-01) Evaluate
$$\lim_{x\to 0} \sin\left(\frac{2}{x}\right)$$
.

12. 5 13. Does not exist	1412 15. $\frac{1}{2}$	16. Does not exist	
12-Review			
1. $\frac{1}{7}$ 21 3. $\frac{1}{4}$ 4. Does not exist 5. 12 6. $f^{-1}(x) = 4$	7. $\int -\frac{1}{4}(x) = -6x$ 8. $f^{-1}(x) = \frac{4}{x^3}$ 9. $\frac{1}{3}$ 10. $\frac{5}{5}$ 11. 0 12. Does not exist	$\begin{array}{c} 13. \ \frac{7}{6} \\ 14. \ 0 \\ 15. \ \frac{116}{3} \\ 16. \ 8 \\ 17 9.8 \ \mathrm{m/s}^2 \\ 18 14.1 \ \mathrm{m} \end{array}$	